Что такое реактор в электрике. Как устроены и работают токоограничивающие и дугогасящие реакторы в энергетике


Токоограничивающий реактор представляет собой катушку со стабильным индуктивным сопротивлением. В цепь прибор подключен последовательно. Как правило, такие устройства не имеют ферримагнитных сердечников. Стандартным считается падение напряжения порядка 3-4%. Если происходит короткое замыкание, основное напряжение подается на токоограничивающий реактор. Максимально допустимое значение рассчитывается по формуле:

In = (2, 54 Ih/Xp) x100%, где Ih - номинальный сетевой ток, а Хр - реактивное сопротивление.

Бетонные конструкции

Электрический аппарат представляет собой конструкцию, которая рассчитана на длительную эксплуатацию в сетях с напряжением до 35 кВ. Обмотка сделана из эластичной проводки, которые демпфируют динамические и термические нагрузки посредством нескольких параллельных цепей. Они позволяют равномерно распределять токи, разгружая при этом механическое усилие на стационарную бетонную основу.

Режим включения катушек фаз выбирают так, чтобы получилось встречное направление магнитных полей. Это также способствует ослаблению динамических усилий при ударных токах КЗ. Открытое размещение обмоток в пространстве способствует обеспечению отличных условий для естественного атмосферного охлаждения. Если тепловые воздействия превышают допустимые параметры, либо происходит короткое замыкание, применяется принудительный обдув при помощи вентиляторов.

Сухие токоограничивающие реакторы

Эти приспособления появились в результате разработки инновационных изоляционных материалов, базирующихся на структурной основе из кремния и органики. Агрегаты успешно функционируют на оборудовании до 220 кВ. Обмотка на катушку наматывается многожильным кабелем с прямоугольным сечением. Он имеет повышенную прочность и покрывается специальным слоем кремнийорганического лакокрасочного покрытия. Дополнительный эксплуатационный плюс - наличие силиконовой изоляции с содержанием кремния.

По сравнению с бетонными аналогами, токоограничивающий реактор сухого типа имеет ряд преимуществ, а именно:

  • Меньшая масса и габаритные размеры.
  • Увеличенная механическая прочность.
  • Повышенная термостойкость.
  • Больший запас рабочего ресурса.

Масляные варианты

Данное электротехническое оборудование оснащается проводниками с изолирующей кабельной бумагой. Устанавливается оно на специальных цилиндрах, которые находятся в резервуаре с маслом или аналогичным диэлектриком. Последний элемент также играет роль детали для отвода тепла.

Для нормализации нагрева металлического корпуса в конструкцию включают магнитные шунты или экраны на электромагнитах. Они позволяют уравновесить поля промышленной частоты, проходящие по виткам обмотки.

Шунты магнитного типа изготавливаются из стальных листов, размещающихся в середине масляного резервуара, непосредственно возле стенок. В результате образуется внутренний магнитопровод, который на себе замыкает поток, создаваемый обмоткой.

Экраны электромагнитного типа создаются в виде короткозамкнутых витков из алюминия или меди. Устанавливаются они около стенок емкости. В них происходит индукция встречного электромагнитного поля, уменьшающего воздействие основного потока.

Модели с броней

Данное электротехническое оборудование создается с сердечником. Подобные конструкции требуют точного расчета всех параметров, что связано с возможностью насыщения магнитного провода. Также требуется тщательный анализ условий эксплуатации.

Сердечники с броней, изготовленные из электротехнической стали, дают возможность уменьшить габаритные размеры и массу реактора наряду со снижением стоимости прибора. Стоит отметить, что при использовании таких устройств требуется учитывать один важный момент: ударный ток не должен превышать предельно допустимого значения для данного рода приспособлений.

Принцип действия токоограничивающих реакторов

В основу конструкции входит катушечная обмотка, имеющая индуктивное сопротивление. Оно включено в разрыв главной питающей цепи. Характеристики этого элемента подбираются таким образом, чтобы при стандартных эксплуатационных условиях напряжение не падало выше 4% от общей величины.

Если в защитной схеме возникает аварийная ситуация, токоограничивающий реактор за счет индуктивности гасит преимущественную часть приложенного высоковольтного воздействия, одновременно сдерживая ударный ток.

Схема работы прибора доказывает тот факт, что при увеличении индуктивности катушки прослеживается снижение воздействия ударного тока.

Особенности

Рассматриваемый электрический аппарат оснащен обмотками, которые имеют магнитный провод из стальных пластин, служащий для повышения реактивных свойств. В таких агрегатах в случае прохождения больших токов по виткам наблюдается насыщение материала сердечника, а это приводит к снижению его токоограничивающих параметров. Следовательно, подобные приспособления не нашли широкого применения.

Преимущественно реакторы-токоограничители не оборудуются стальными сердечниками. Связано это с тем, что достижение необходимых характеристик индуктивности сопровождается значительным увеличением массы и габаритов приспособления.

Ударный ток короткого замыкания: что это?

Для чего нужен реактор токоограничивающий на 10 кВ и более? Дело в том, что при номинальном режиме питающая высоковольтная энергия расходуется на преодоление максимального сопротивления активной электросхемы. Она, в свою очередь, состоит из активной и реактивной нагрузки, обладающей емкостными и индуктивными связями. В результате создается рабочий ток, который оптимизируется при помощи полного сопротивления цепи, мощности и показателя напряжения.

При коротком замыкании происходит шунтирование источника посредством случайного подключения максимальной нагрузки в сочетании с минимальным активным сопротивлением, что характерно для металлов. При этом наблюдается отсутствие реактивной составляющей фазы. Короткое замыкание нивелирует равновесие в рабочей схеме, образуя новые типы токов. Переход от одного режима к другому происходит не мгновенно, а в затянутом режиме.

Во время этой кратковременной трансформации изменяются синусоидные и общие величины. После короткого замыкания новые формы тока могут приобретать вынужденную периодическую либо свободную апериодическую сложную форму.

Первый вариант способствует повторению конфигурации питающего напряжения, а вторая модель предполагает преобразование показателя скачками с постепенным убыванием. Формируется она посредством емкостной нагрузки номинального показателя, рассматриваемого как холостой ход для последующего короткого замыкания.

: … довольно банально, но тем не менее я так и не нашел инфу в удобоваримой форме — как НАЧИНАЕТ работать атомный реактор. Про принцип и устройство работы всё уже 300 раз разжеванно и понятно, но вот то как получают топливо и из чего и почему оно не столь опасно пока не в реакторе и почему не вступает в реакцию до погружения в реактор! — ведь оно разогревается только внутри, тем не менее перед загрузкой твлы холодные и всё нормально, так что-же служит причиной нагрева элементов не совсем ясно, как на них воздействуют и так далее, желательно не по научному).

Сложно конечно такую тему оформить не «по научному», но попробую. Давайте сначала разберемся, что из себя представляют эти самые ТВЭЛы.

Ядерное топливо представляет собой таблетки черного цвета диаметром около 1 см. и высотой около 1.5 см. В них содержится 2 % двуокиси урана 235, и 98 % урана 238, 236, 239. Во всех случаях при любом количестве ядерного топлива ядерный взрыв развиться не может, т.к.для лавинообразной стремительной реакции деления, характерной для ядерного взрыва требуется концентрация урана 235 более 60%.

Двести таблеток ядерного топлива загружаются в трубку, изготовленную из металла цирконий. Длина этой трубки 3.5м. диаметр 1.35 см. Эта трубка называется ТВЭЛ- тепловыделяющий элемент. 36 ТВЭЛов собираются в кассету (другое название «сборка»).

Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций - это минимум 107 K из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции.

Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Ленинградская АЭС, Реактор РБМК

Начало работы реактора:

В начальный момент времени после первой загрузки топливом, цепная реакция деления в реакторе отсутствует, реактор находится в подкритическом состоянии. Температура теплоносителя значительно меньше рабочей.

Как мы уже тут упоминали, для начала цепной реакции делящийся материал должен образовать критическую массу, - достаточное количество спонтанно расщепляющегося вещества в достаточно небольшом пространстве, условие, при котором число нейтронов, выделяющихся при делении ядер должно быть больше числа поглощенных нейтронов. Это можно сделать, повысив содержание урана-235 (количество загруженных ТВЭЛОВ), либо замедлив скорость нейтронов, чтобы они не пролетали мимо ядер урана-235.

Вывод реактора на мощность осуществляется в несколько этапов. С помощью органов регулирования реактивности реактор переводится в надкритическое состояние Кэф>1 и происходит рост мощности реактора до уровня 1-2 % от номинальной. На этом этапе производится разогрев реактора до рабочих параметров теплоносителя причем скорость разогрева ограничена. В процессе разогрева органы регулирования поддерживают мощность на постоянном уровне. Затем производится пуск циркуляционных насосов и вводится в действие система отвода тепла. После этого мощность реактора можно повышать до любого уровня в интервале от 2 — 100 % номинальной мощности.

При разогреве реактора реактивность меняется, в виду изменения температуры и плотности материалов активной зоны. Иногда при разогреве меняется взаимное положение активной зоны и органов регулирования, которые входят в активную зону или выходят из нее, вызывая эффект реактивности при отсутствии активного перемещения органов регулирования.

Регулирование твердыми, движущимися поглощающими элементами

Для оперативного изменения реактивности в подавляющем большинстве случаев используется твердые подвижные поглотители. В реакторе РБМК управляющие стержни содержат втулки из карбида бора заключенные в трубку из алюминиевого сплава диаметром 50 или 70 мм. Каждый регулирующий стержень помещен в отдельный канал и охлаждается водой контура СУЗ (система управления и защиты) при средней температуре 50 ° С. По своему назначению стержни делятся на стержни АЗ (аварийной зашиты), в РБМК таких стержней 24 штуки. Стержни автоматического регулирования — 12 штук, Стержни локального автоматического регулирования — 12 штук, стержни ручного регулирования -131, и 32 укороченных стержня поглотителя (УСП). Всего имеется 211 стержней. Причем укороченные стержни вводятся в АЗ с низу остальные с верху.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Выгорающие поглощающие элементы.

Для компенсации избыточной реактивности после загрузки свежего топлива, часто используют выгорающие поглотители. Принцип работы которых состоит в том, что они, подобно топливу, после захвата нейтрона в дальнейшем перестают поглощать нейтроны (выгорают). Причем скорости убыли в результате поглощения нейтронов, ядер поглотителей, меньше или равна скорости убыли, в результате деления, ядер топлива. Если мы загружаем в АЗ реактора топливо рассчитанное на работу в течении года, то очевидно, что количество ядер делящегося топлива в начале работы будет больше чем в конце, и мы должны скомпенсировать избыточную реактивность поместив в АЗ поглотители. Если для этой цели использовать регулирующие стержни, то мы должны постоянно перемещать их, по мере того как количество ядер топлива уменьшается. Использование выгорающих поглотителей позволяет уменьшить использование движущихся стержней. В настоящее время выгорающие поглотители часто помешают непосредственно в топливные таблетки, при их изготовлении.

Жидкостное регулирование реактивности.

Такое регулирование применяется, в частности, при работе реактора типа ВВЭР в теплоноситель вводится борная кислота Н3ВО3, содержащая ядра 10В поглощающие нейтроны. Изменяя концентрацию борной кислоты в тракте теплоносителя мы тем самым изменяем реактивность в АЗ. В начальный период работы реактора когда ядер топлива много, концентрация кислоты максимальна. По мере выгорания топлива концентрация кислоты снижается.

Механизм цепной реакции

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Исключение составляют подкритические реакторы с внешним источником тепловых нейтронов. Освобождение связанной реактивности по мере её снижения в силу естественных причин обеспечивает поддержание критического состояния реактора в каждый момент его работы. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, одновременно искусственно снижается k0 размножающей среды. Это достигается введением в активную зону веществ-поглотителей нейтронов, которые могут удаляться из активной зоны в последующем. Так же как и в элементах регулирования цепной реакции, вещества-поглотители входят в состав материала стержней того или иного поперечного сечения, перемещающихся по соответствующим каналам в активной зоне. Но если для регулирования достаточно одного-двух или нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Эти стержни называются компенсирующими. Регулирующие и компенсирующие стержни не обязательно представляют собой различные элементы по конструктивному оформлению. Некоторое число компенсирующих стержней может быть стержнями регулирования, однако функции тех и других отличаются. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

Иногда стержни управления делаются не из материалов-поглотителей, а из делящегося вещества или материала-рассеивателя. В тепловых реакторах - это преимущественно поглотители нейтронов, эффективных же поглотителей быстрых нейтронов нет. Такие поглотители, как кадмий, гафний и другие, сильно поглощают лишь тепловые нейтроны благодаря близости первого резонанса к тепловой области, а за пределами последней ничем не отличаются от других веществ по своим поглощающим свойствам. Исключение составляет бор, сечение поглощения нейтронов которого снижается с энергией значительно медленнее, чем у указанных веществ, по закону l / v. Поэтому бор поглощает быстрые нейтроны хотя и слабо, но несколько лучше других веществ. Материалом-поглотителем в реакторе на быстрых нейтронах может служить только бор, по возможности обогащенный изотопом 10В. Помимо бора в реакторах на быстрых нейтронах для стержней управления применяются и делящиеся материалы. Компенсирующий стержень из делящегося материала выполняет ту же функцию, что и стержень-поглотитель нейтронов: увеличивает реактивность реактора при естественном её снижении. Однако, в отличие от поглотителя, такой стержень в начале работы реактора находится за пределами активной зоны, а затем вводится в активную зону.

Из материалов-рассеивателей в быстрых реакторах употребляется никель, имеющий сечение рассеяния быстрых нейтронов несколько больше сечений других веществ. Стержни-рассеиватели располагаются по периферии активной зоны и их погружение в соответствующий канал вызывает снижение утечек нейтронов из активной зоны и, следовательно, возрастание реактивности. В некоторых специальных случаях целям управления цепной реакцией служат подвижные части отражателей нейтронов, при перемещении изменяющие утечки нейтронов из активной зоны. Регулирующие, компенсирующие и аварийные стержни совместно со всем оборудованием, обеспечивающим их нормальное функционирование, образуют систему управления и защиты реактора (СУЗ).

Аварийная защита:

Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают «Систему аварийного охлаждения активной зоны» (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно «Правилам ядерной безопасности реакторных установок атомных станций», по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.

Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:

1. По плотности нейтронного потока – не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока – не менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:

1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Может кто то сможет еще менее по научному объяснить кратко как начинает работу энергоблок АЭС? :-)

Вспомните такую тему, как и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Реактором назвают статическое электромагнитное устройство, предназначенное для использования его индуктивности в электрической цепи. На э. п. с. переменного и постоянного тока и на тепловозах широко применяют реакторы: сглаживающие - для сглаживания пульсаций выпрямленного тока; переходные - для переключения выводов трансформатора; делительные - для равномерного распределения тока нагрузки между параллельно включенными вентилями; токоограничивающие - для ограничения тока короткого замыкания; помехоподавления - для подавления радиопомех, возникающих при работе электрических машин и аппаратов; индуктивные шунты - для распределения при переходных процессах тока между обмотками возбуждения тяговых двигателей и включенными параллельно им резисторами и пр.

Катушка с ферромагнитным сердечником в цепи переменного тока. При подключении катушки с ферромагнитным сердечником в цепь переменного тока (рис. 231, а) протекающий по ней ток определяется потоком, который необходимо создать, чтобы индуцируемая в катушке э. д. с. e L была равна и противоположна по фазе приложенному к ней напряжению. Этот ток называют намагничивающим. Он зависит от числа витков катушки, магнитного сопротивления ее магнитопровода (т. е. от площади поперечного сечения, длины и материала магнитопровода), напряжения и частоты его изменения. При увеличении поданного на катушку напряжения u возрастает поток Ф, сердечник ее насыщается, что вызывает резкое увеличение намагничивающего тока. Следовательно, такая катушка представляет собой нелинейное индуктивное сопротивление X L , значение которого зависит от приложенного к ней напряжения. Вольт-амперная характеристика катушки с ферромагнитным сердечником (рис. 231,б) имеет вид, подобный кривой намагничивания. Как было показано в главе III, магнитное сопротивление магнитопровода определяется также размерами воздушных зазоров, имеющихся в магнитной цепи. Поэтому форма вольт-амперной характеристики катушки зависит от воздушного зазора б в магнитной цепи. Чем больше этот зазор, тем больший ток i проходит через катушку при заданном напряжении и, следовательно, тем меньше индуктивное сопротивление X L катушки. С другой стороны, чем больше магнитное сопротивление, создаваемое воздушным зазором, по сравнению с магнитным сопротивлением ферромагнитных участков магнитопровода, т. е. чем больше зазор б, тем больше вольт-амперная характеристика катушки приближается к линейной.

Регулировать индуктивное сопротивление X L катушки с ферромагнитным сердечником можно не только путем изменения воздушного зазора 8, но и путем подмагничивания ее сердечника постоянным током. Чем больше подмагничивающий ток, тем большее насыщение создается в магнитопроводе катушки и тем меньше ее индуктивное сопротивление Х L . Катушка с ферромагнитным сердечником, подмагничиваемым постоянным током, называется насыщающимся реактором.

Применение реакторов для регулирования и ограничения тока в электрических цепях переменного тока вместо резисторов обеспечивает значительную экономию электрической энергии, так как в реакторе в отличие от резистора потери мощности незначительны (они определяются малым активным сопротивлением проводов реактора).

При включении катушки с ферромагнитным сердечником в цепь переменного тока протекающий по ней ток не будет синусоидальным. Из-за насыщения сердечника катушки в кривой тока i получаются «пики» тем больше, чем больше насыщение магнитопровода (рис. 231, в).

Сглаживающие реакторы. На электровозах и электропоездах переменного тока с выпрямителями для сглаживания пульсаций выпрямленного тока в цепях тяговых двигателей применяют сглаживающие реакторы, выполненные в виде катушки со стальным сердечником. Активное сопротивление катушки весьма мало, поэтому она практически не влияет на постоянную составляющую выпрямленного тока. Для переменной же составляющей тока катушка создает индуктивное сопротивление X L = ? L тем большее, чем выше частота? соответствующей гармоники. В результате этого амплитуды гармонических составляющих выпрямленного тока резко уменьшаются и, следовательно, снижается пульсация тока. На э. п. с. переменного тока с выпрямителями, работающими от контактной сети с частотой 50 Гц, основной гармоникой выпрям-

ленного тока, которая имеет наибольшую амплитуду, является гармоника с частотой 100 Гц. Для эффективного ее подавления необходимо было бы включить сглаживающий реактор с большой индуктивностью, т. е. довольно значительных размеров. Поэтому практически эти реакторы рассчитывают так, чтобы снизить коэффициент пульсации тока до 25-30%.

Индуктивность реактора, а следовательно, и его габаритные размеры зависят от наличия в нем ферромагнитного сердечника. При отсутствии сердечника для получения требуемой индуктивности реактор должен иметь катушку значительного диаметра и с большим числом витков. Реакторы без сердечника устанавливают на тяговых подстанциях для сглаживания пульсации тока, поступающего в контактную сеть от выпрямителей. Они имеют большие габаритные размеры и массу и требуют значительного расхода меди. На э.п.с. устанавливать подобные устройства не представляется возможным.

Однако выполнять реактор с замкнутым стальным сердечником, как у трансформатора, нецелесообразно, так как протекающая по его катушке постоянная составляющая тока вызвала бы при больших нагрузках сильное насыщение сердечника и снижение индуктивности реактора. Поэтому магнитную систему сглаживающего
реактора должны рассчитывать так, чтобы она не насыщалась от постоянной составляющей тока. Для этой цели магнитопровод 1 реактора выполняют незамкнутым (рис. 232, а) так, чтобы его магнитный поток частично проходил по воздуху, либо замкнутым, но с большими воздушными зазорами (рис. 232, б). Чтобы уменьшить расход меди и снизить массу
и габаритные размеры реактора, его обмотку 2 рассчитывают на повышенную плотность тока и интенсивно охлаждают. На электровозах и электро-

поездах применяют реакторы с принудительным воздушным охлаждением. Такой реактор заключают в специальный цилиндрический кожух; охлаждающий воздух проходит по каналам между его сердечником и обмоткой. Имеются также конструкции реакторов, в которых сердечник с обмоткой установлен в баке с трансформаторным маслом. Для уменьшения вихревых токов, которые снижают индуктивность реактора, его сердечник собирают из изолированных листов электротехнической стали.

Подобную же конструкцию имеют индуктивные шунты, которые обеспечивают при переходных процессах требуемое распределение токов между обмоткой возбуждения тягового двигателя и шунтирующим резистором (при регулировании частоты вращения двигателей путем уменьшения магнитного потока).

Токоограничивающие реакторы . На э. п. с. переменного тока с полупроводниковыми выпрямителями в некоторых случаях последовательно с выпрямительной установкой включают токоограничивающие реакторы. Полупроводниковые вентили имеют малую перегрузочную способность и при больших токах быстро выходят из строя. Поэтому при использовании их необходимо принимать специальные меры для ограничения тока короткого замыкания и быстрого отключения выпрямительной установки от источника питания до того, как этот ток достигнет значения, опасного для вентилей. При коротком замыкании в цепи нагрузки и пробое вентилей индуктивность реактора ограничивает ток. короткого замыкания (примерно в 4-5 раз по сравнению с током без реактора) и замедляет скорость его нарастания. В результате этого за период времени, необходимый для срабатывания защитной аппаратуры, ток короткого замыкания не успевает возрасти до опасного значения. В токоограничивающих реакторах иногда применяют дополнительную обмотку, выполняющую роль вторичной обмотки трансформатора. При возникновении короткого замыкания резко возрастает ток, проходящий по основной обмотке реактора, и увеличивающийся магнитный поток индуцирует в дополнительной обмотке импульс напряжения. Этот импульс служит сигналом для срабатывания устройства защиты, отключающего выпрямительную установку.

Современные автоматические выключатели ликвидируют токи коротких замыканий с минимально возможной выдержкой времени. Но, они не могут противостоять действию электродинамических сил, которые развиваются в первоначальный момент аварии. Для ликвидации их ударного проявления используются другие технические решения, основанные на работе реакторов.

Термин «Реактор» используется для обозначения устройств, работающих за счет проявления сил различных реакций, когда создается ответное воздействие на протекание какого-то определенного процесса, например, биологического, химического, электрического. механического…

Если совершается какое-то действие (обозначаемое корнем слова «акция»), то техническое устройство контролирует этот процесс и осуществляет противодействие его развитию (определяется предлогом «ре»). Название «Реактор» обозначается термином, состоящим из этого корня и предлога. А его окончание завершает определение технического устройства.

Наиболее широко используются сухие реакторы в сетях 6 и 10 кВ. Они выполняются в виде обмотки из изолированного провода, закрепленной на бетонных колоннах. Монтируются с вертикальным, горизонтальным или ступенчатым расположением фаз, в отдельных камерах распределительного устройства. В сетях более высоких напряжений применяются реакторы с масляной изоляцией, с каркасом стержневой или тороидальной формы из изоляционного материала и стальным баком.

Реакторы различают: по исполнению - одинарные и сдвоенные, по месту включения - секционные и линейные, по характеристикам - с линейной или нелинейной характеристикой, управляемые и неуправляемые. Сухие бетонные реакторы относятся к неуправляемым реакторам с линейной характеристикой.

Виды реакторов в энергетике

В высоковольтных электрических системах реакторы работают на принципе контроля и ограничения аварийных токов, стихийно возникающих на оборудовании схемы.

По назначению конструкции они подразделяются на два вида:

1. уменьшающие величины токов коротких замыканий - токоограничивающие;

2. снижающих возникающую электрическую дугу - дугогасящие.

Первый вид электротехнических аппаратов создается для устранения действия ударного тока, образуемого при возникновении короткого замыкания.

Второй - дугогасящие реакторы увеличивают индуктивное сопротивление, противодействующее развитию дуги при аварийной ситуации, связанной с образованием однофазного замыкания на контур земли в сетях, использующих глухоизолированную нейтраль.

Оба вида этих электротехнических устройств при номинальном режиме работы оборудования вносят небольшую погрешность в выходные характеристики системы, но она лежит в пределах рабочих нормативов, вполне допустима.

Токоограничивающие реакторы


Что такое ударный ток короткого замыкания

При номинальном режиме высоковольтная энергия питания расходуется на преодоление полного сопротивления подключенной электрической схемы, состоящего из активной и реактивной нагрузки с индуктивными и емкостными связями. При этом создается рабочий ток, сбалансированный приложенной мощностью, напряжением, полным сопротивлением цепи.

Во время короткого замыкания происходит шунтирование огромной мощности источника случайным подключением нагрузки с маленьким активным сопротивлением, характерным для металлов. В ней отсутствует реактивная составляющая.

Это КЗ устраняет созданное равновесие в рабочей схеме, формирует новые виды токов. При этом переход источника напряжения на режим короткого замыкания происходит не мгновенно, а слегка растянут по времени. Такой кратковременный период называют переходным. При его протекании токи нагрузки изменяют форму и величину от значения гармоничной синусоиды номинального режима до характеристик установившегося подключения к «металлическому замыканию».

В ходе протекания переходных процессов полный ток от КЗ представляет собой вид сложной формы, которую для упрощения расчетов и анализа разделяют минимум на две составляющие:

1. вынужденную периодическую;

2. свободную апериодическую.


Первая часть повторяет форму питающего напряжения, а вторая возникает скачком и постепенно убывает по величине. Она формируется за счет емкостной нагрузки номинального режима, который рассматривается как холостой ход для последующего короткого замыкания.


Обе составляющие, складываясь вместе, создают ток, изменяющийся во времени сложным видом. Его необходимо учитывать при создании защит для принятия действенных мер.

За основу расчета выбирается величина с максимальным мгновенным значением апериодической составляющей. Его и называют ударным током.

Как работает токоограничивающий реактор

Основу конструкции составляет обмотка катушки, обладающей индуктивным сопротивлением, включенным в разрыв основной цепи питания. Ее параметры подбирают таким образом, чтобы при нормальных условиях эксплуатации падение напряжения на ней не превышало четырех процентов от общей величины.

При возникновении аварийной ситуации в защищаемой схеме эта индуктивность гасит большую часть приложенного высоковольтного напряжения и таким образом ограничивает действие ударного тока.

Токоограничивающий реактор рассчитывают по величине максимального тока аварии Im, которому он может противостоять по выражению:

Im= (2,54I н/Хр)х100%

В формуле Iн обозначает значение номинального тока, а Xр - величину реактивного сопротивления обмотки.

Приведенная закономерность наглядно показывает, что увеличение индуктивности катушки ведет к уменьшению ударного тока.

Реактивные свойства обмоток обычно повышают подключением магнитопровода из стальных пластин. В конструкциях подобных реакторов при протекании больших токов по виткам происходит насыщение материала сердечника, что ведет к потере его токоограничивающих свойств. Поэтому от таких конструкций в большинстве случаев отказываются.

Токоограничивающие реакторы, как правило, изготавливают без использования стальных сердечников. Из-за необходимости достижения требуемой индуктивности они обладают повышенными габаритами и весом.

Конструкции токоограничивающих реакторов

По внутреннему исполнению они бывают:

1. бетонными;

2. сухими;

3. масляными;

4. броневыми.

Реакторы из бетонных блоков

Такие конструкции эксплуатируются довольно долгое время в сетях с напряжением до 35 кВ. Их обмотку делают из эластичных проводов, демпфирующих динамические и температурные нагрузки несколькими параллельными цепочками, равномерно распределяющими токи. Этим способом разгружают механическое воздействие на стационарную бетонную конструкцию.


Витки обмоток подобных реакторов выполнены многожильными проводами круглого сечения с изоляцией. Их заливают специальным сортом высокопрочного бетона, смонтированного в вертикальные колонки. При необходимости дополнения в конструкцию металлических частей используют исключительно немагнитные материалы.

Способ включения фазных катушек выбирают таким, что бы магнитные поля от них направлялись встречно. Этим приемом ослабляют динамические усилия при ударных токах КЗ.

Открытое расположение обмоток в пространстве позволяет обеспечивать хорошие условия для естественного охлаждения атмосферным воздухом. Когда тепловые нагрузки при номинальном режиме или коротких замыканиях способны превысить допустимые пределы нагрева обмоток, то применяют принудительный обдув вентиляторами.

При эксплуатации следует учитывать, что при сырой погоде бетон накапливает влажность из воздуха.

Подобные устройства до сих пор массово работают в высоковольтных сетях энергетики, успешно справляются с аварийными ситуациями, но считаются уже морально устаревшими.

Реакторы сухого типа

Они стали появляться благодаря разработке новых изоляционных материалов, основанных на кремнийорганической структуре. Она позволяет создавать изделия, успешно работающие на электрооборудовании до 220 кВ включительно.


Катушка обмотки наматывается прямоугольным многожильным кабелем повышенной прочности и покрывается слоем кремнийорганического лака. Дополнительные эксплуатационные преимущества обеспечивает покрытие кремнийорганической силиконовой изоляцией.

В результате этих доработок сухие токоограничивающие реакторы по сравнению с бетонными аналогами обладают:

    меньшими габаритами и весом;

    повышенной механической прочностью;

    лучшей термостойкостью;

    бо́льшим ресурсом работы.

Масляные реакторы

У них медная обмотка проводников изолируется пропитанной кабельной бумагой и монтируется на изоляционных цилиндрах, помещенных в емкость с маслом либо другим жидким диэлектриком, одновременно выполняющим функцию отвода тепла.

Чтобы исключить нагрев металлического корпуса емкости от протекающего по виткам обмотки переменного поля промышленной частоты в подобную конструкцию включают магнитные шунты или электромагнитные экраны.

Магнитный шунт создают из магнитомягких листов стали. размещенных внутри масляной емкости около ее стенок. Образованный таким методом внутренний магнитопровод замыкает на себя магнитный поток, создаваемый обмоткой.

Электромагнитные экраны изготавливают в виде алюминиевых либо медных короткозамкнутых витков, смонтированных у стенок бака. В них индуцируется встречное электромагнитное поле, снижающее действие основного.

Реакторы с броней

Создаются с сердечником. Учитывая возможность насыщения магнитопровода, такие изделия требуют точного расчета и тщательного анализа условий эксплуатации.

Броневые сердечники из электротехнических сортов стали позволяют снижать габариты и вес подобных конструкций реакторов, а заодно и стоимость.

Но при их использовании требуется обязательно учитывать то обстоятельство, чтобы ударный ток не превышал максимального возможного значения для этого типа устройств.

Дугогасящие реакторы

Защищают кабельную ЛЭП по другому принципу, чем их токоограничивающие аналоги.

Об опасности однофазных замыканий на контур земли в схеме с изолированной нейтралью

Энергетические сети с рабочим напряжением 6÷35 кВ создаются для работы на линиях электропередач с нейтралью, изолированной от земли. В этом случае между всеми проводниками образуется емкостное сопротивление, а они сами работают так же, как обкладки конденсатора, то есть накапливают заряды.

При нарушении изоляции любой из фаз на контур земли создается замкнутая электрическая цепочка, через которую начинает стекать только емкостной ток. Он не создает короткое замыкание. Поэтому подобную неисправность допускается действующими документами устранять не мгновенно, а с выдержкой времени до двух часов. Она необходима оперативному персоналу как резерв на изменение схемы питания потребителей поврежденной линии без перерыва их электроснабжения.

С этой целью настраиваются в работу на сигнал, а не на отключение питания. Однако в такой ситуации проявляется двойная опасность:

1. попадания человека под действие шагового напряжения, оказавшегося в случайном месте возникновения неисправности;

2. возникновения электрической дуги, когда емкостной ток станет превышать величину в 20 ампер.

Горение дуги разрушает изоляцию проводов и кабелей, переводит однофазное замыкание в двух- или трехфазное КЗ со всеми негативными последствиями. Ее действие ограничивают защитными устройствами.

Назначение дугогасящих реакторов


Обмотка катушки L включается между нейтралью генератора и контуром земли. Она обладает индуктивным сопротивлением, которое можно регулировать посредством переключения числа витков. Измерительный трансформатор ТА позволяет контролировать проходящий ток для принятия действенных мер.

Такой способ подключения обмотки катушки позволяет создавать последовательную цепочку, состоящую из емкости и индуктивности, к которой приложено напряжение источника фазы с поврежденной изоляцией.

Емкостной и индуктивный токи находятся в противофазе, сдвинуты на общий угол 180 градусов. Действие емкостного тока ограничивается индуктивным, направленным встречно. В итоге суммарная величина, проходящая через поврежденную изоляцию, значительно уменьшается.

Методы классификации

Способы настроек

Дугогасящие реакторы могут создаваться под индивидуальные условия эксплуатации, не требующие специальных настроек для линий ограниченной длины или изготавливаться с возможностью регулировки индуктивного сопротивления катушки:

1. ступенчато:

2. плавно.

В первом случае изменение индуктивности осуществляется за счет переключения числа обмоток, подключенных к отпайкам.

Плавную регулировку выполняют:

    плунжерные конструкции, регулирующие воздушный зазор магнитопровода;

    реакторы с подмагничиванием постоянным током, использующие принципы магнитных усилителей.

Виды управления

Дугогасящие реакторы постоянной индуктивности создаются без систем управления.

Для регулирования индуктивности используются конструкции с:

    ручным переключением числа работающих витков. Этот процесс не только трудоемкий, но и требует снятия напряжения с реактора;

    приводом, работающим автоматически под нагрузкой сети;

    измерителем емкости, позволяющим автоматически подстраивать индуктивность под результат замера за счет плавного регулирования тока.

Современные конструкции дугогасящих реакторов в управлении используют микропроцессорные технологии, облегчающие возможности эксплуатации предоставлением обслуживающему персоналу расширенной информации по статистике замыканий, поиску повреждений и другим полезным функциям.

Реактор – это катушка с неизменной индуктивностью, предназначенная для поддержания напряжения на шинах и ограничения токов короткого замыкания в случае возникновения аварийных режимов работы. Для более детального понимания давайте рассмотрим рисунок ниже:

Сборные шины 2 получают питание от генератора 1. От этих шин идут линии 3 к потребителю. Рассмотрим два случая – за 4 реактор не установлен, а за выключателем 5 установлен реактор 6.

В случае возникновения трехфазного короткого замыкания за выключателем 4 ток короткого замыкания I к1 будет определяться в основном индуктивным сопротивлением генератора:

Введем понятие относительного индуктивного сопротивления генератора, выраженного в процентах:

Где I н.г – номинальный ток генератора.

Воспользовавшись формулами (1) и (2) получим:

В таком случае напряжение на сборных шинах станет равно нулю и, соответственно, на всех отходящих линиях напряжения тоже не будет.

Стоит также отметить, что выключатель 4 должен быть выбран по току короткого замыкания I k 1 .

В случае короткого замыкания на линии с реактором ток короткого замыкания будет определяться суммарным сопротивлением реактора и генератора:

Введем относительное реактивное сопротивление реактора в процентах:

Обычно от одного источника питаются несколько десятков потребителей электрической энергии. Поэтому значение номинального тока линии намного меньше номинального тока генератора. Длительный ток реактора выбирается исходя из длительного тока линии, откуда следует I н.р << I н.г.

Предположим, Х% Г = Х% Р. Тогда из формул (2) и (5) следует, что Х р >> Х г. При этом можно написать:

Реактор довольно надежный аппарат и его повреждение или выход из строя практически исключены. Поэтому выбор аппаратуры линии производят по току производят исходя из соотношения I k 2 << I k 1 . Это значительно удешевляет и облегчает распределительное устройство.

Поскольку Х р >> X г, то в случае возникновения короткого замыкания практически все напряжение ложится на индуктивное сопротивление реактора и напряжение на шинах получается близким к номинальному (рисунок ниже а)):

В номинальном режиме работы через реактор проходит ток нагрузки. Потерю напряжения на реакторе можно определить по формуле:

Векторная диаграмма напряжения показана на рисунке выше б). При чисто индуктивной нагрузке φ = 90 0 потеря напряжения равна падению напряжения на реакторе. В случае работы на активную нагрузку с cosφ = 0,8 потеря напряжения равна 0,6 Х р %. Отсюда следует, что потеря напряжения на реакторе в длительном режиме невелика.

В настоящее время разработаны и успешно эксплуатируются специальные сдвоенные реакторы, у которых в номинальном режиме работы потеря напряжения еще меньше.

Поскольку выбор электрической аппаратуры распределительного устройства проводится с учетом ограничения тока короткого замыкания реактором, то к его надежности предъявляются особо высокие требования.

В номинальном режима работы обмотка реактора нагревается проходящим через него током. Мощность, которая выделяется в обмотке реактора, составляет несколько киловатт при малых токах, и несколько десятков киловатт при больших токах (I н.р = 2000 А).

В случае короткого замыкания через реактор проходит ток во много раз превышающий номинальное значение. Данное явление приводит к быстрому повышению температуры реактора.

Поэтому в качестве основных параметров вводят длительный номинальный ток I н и ток термической стойкости I н.т, отнесенный к определенному времени t н.т. Иногда термическая стойкость задается произведением:

Если индуктивное сопротивление реактора превышает 3%, то наибольший ток короткого замыкания, проходящий через реактор, задается соотношением:

Данный ток берется за основу при расчете электродинамической и термической стойкости реактора.

В случае если X p % < 3%, то при расчете тока короткого замыкания следует учитывать сопротивление источника питания.

При прохождении токов короткого замыкания внутри последнего создаются электродинамические силы, стремящиеся его разрушить. Механическая прочность реактора характеризуется ударным током электродинамической стойкости. При расчете электродинамической стойкости реактора за основу берут ударный ток, рассчитывающийся по формуле:

Основным параметром реактора является его индуктивность L. Так как:

В таком случае индуктивность реактора равна:

Где I н.р в амперах, а U н – в киловольтах.

Индуктивность определяется размерами и количеством витков реактора и рассчитывается по формулам 1 и 2.

Для бетонных реакторов, имеющих обмотку n витков в виде катушки с высотой h (м), толщиной b (м) и средним диаметром D (м), достаточно точные расчеты индуктивности по формуле Корндорфера:

Индуктивность пропорциональна магнитной проводимости. Применение ферромагнитных сердечников позволяет резко снизить размеры реактора. Но в наиболее ответственный момент, при коротком замыкании, из-за большого тока происходит насыщение сердечников и, как следствие, уменьшение индуктивности. Это приводит к уменьшению токоограничивающего эффекта, для которого и предназначен реактор. В связи с этим применения сердечников в реакторах не получило широкого распространения. Пропускная способность (кВ·А) трехфазного комплекта реакторов равна:

По существу Q – реактивная мощность трехфазного комплекта.

Выбор редакции
Токоограничивающий реактор представляет собой катушку со стабильным индуктивным сопротивлением. В цепь прибор подключен последовательно....

Бабенко ДарьяРабота посвящена актуальной проблеме – изучению зимующих птиц города Покачи и помощи птицам в зимнее время. Описаны...

Наши задачи: 1.Выяснить, знают ли учащиеся моего класса фразеологизмы о птицах. 2.Узнать, что символизируют названия некоторых птиц в...

Мало кто задается вопросом "что такое производство", считая это понятие элементарным. Однако на самом деле это достаточно сложный...
Адаптация, а также профориентация персонала – это целый комплекс различных мероприятий, которые направлены на то, чтобы выяснить...
Наибольшей популярностью этот рисунок пользуется в индейских мотивах. Коренные племена Северное Америки считали перо символом...
Презентация по слайдам Текст слайда: Курский государственный медицинский университет Кафедра общей хирургии Лекция Терминальные и...
Журнал учета розничной продажи пива и другой алкогольной продукции. Пример заполнения. Автоматизация в программе Excel и средствами...
Это ошибки в зрительном восприятии, вызванные неточностью или неадекватностью процессов неосознаваемой коррекции зрительного образа...