Картирование генов возможно с помощью. Картирование генома человека


Картирование генома человека

Нам незачем богов напрасно беспокоить -

Есть внутренности жертв, чтоб о войне гадать,

Рабы, чтобы молчать, и камни, чтобы строить!

Осип Мандельштам, «Природа - тот же Рим…»

Генетика - молодая наука. Эволюция видов была по-настоящему открыта лишь в конце 50-х годов XIX века. В 1866 году австрийский монах Грегор Мендель опубликовал результаты своих опытов по опылению гороха. Вплоть до конца века на его открытие никто не обратил внимания. И Гальтон, к примеру, так никогда и не узнал о них. Даже механизм оплодотворения - слияние ядер мужских и женских половых клеток - был открыт лишь в 1875 году. В 1888 г. в ядрах клеток были обнаружены тельца, названные хромосомами, а в 1909-м менделевские факторы наследования получили наименование генов. Первое искусственное оплодотворение (у кролика, а затем у обезьян) было произведено в 1934 году; и, наконец, в 1953-м было совершено фундаментальное открытие - установлена двойная спиральная структура ДНК. Как видим, все это произошло совсем недавно, так что ранние евгеники в общем-то были весьма мало осведомлены о технике своего дела.

Картирование генома человека находится все еще на ранней стадии. То, что мы знаем, - это малая крупица по сравнению с тем, чего мы не знаем. Существует три миллиарда нуклеотидных последовательностей, образующих от двадцати шести до тридцати восьми тысяч генов, которыми непосредственно кодируются белки. А вот как взаимодействуют гены и производимые ими белки, до сих пор плохо понятно.

Впрочем, роль генов в человеческом обществе довольно быстро осознается. В 1998 году Дайана Пол (Массачусетский университет) напомнила о том, что еще четырнадцать лет тому назад она назвала

«биологически детерминистской» точку зрения, согласно которой на различия в интеллекте и темпераменте влияют гены - используя эти термины так, словно их значение было конкретизировано. Сегодня их использование было бы спорным, так как эти ярлыки как бы ставят данную точку зрения под вопрос, в то время, как она широко принята и учеными, и общественностью» .

Как бы то ни было, наши знания пополняются буквально с каждым днем, и уже в самом недалеком будущем мы сумеем с большой точностью анализировать генетический груз, который мы навязываем будущим поколениям.

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Геном человека: Энциклопедия, написанная четырьмя буквами автора

Из книги Геном человека [Энциклопедия, написанная четырьмя буквами] автора Тарантул Вячеслав Залманович

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги Расшифрованная жизнь [Мой геном, моя жизнь] автора Вентер Крейг

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Из книги автора

Из книги автора

ЧАСТЬ I. СТРУКТУРА ГЕНОМА ЧЕЛОВЕКА ЧТО ТАКОЕ ГЕНОМ? Вопросы вечны, ответы обусловлены временем. Е. Чаргафф В диалоге с жизнью важен не ее вопрос, а наш ответ. М. И. Цветаева С самого начала определимся, что мы здесь будем подразумевать под словом геном. Сам этот термин

Из книги автора

Анализ суммарной ДНК - новые сведения о структуре генома человека На первом этапе непосредственного исследования структуры генома человека, когда еще не существовала методология генной инженерии, для изучения ДНК применяли традиционные физико-химические методы. В

Из книги автора

Из книги автора

ЧАСТЬ II. ФУНКЦИЯ ГЕНОМА ЧЕЛОВЕКА КОРОЛЕВА УМЕРЛА - ДА ЗДРАВСТВУЕТ КОРОЛЕВА! То, что мы знаем, - ограниченно, а то, чего мы не знаем, - бесконечно. П. Лаплас Наука всегда оказывается не права. Она никогда не решит вопроса, не поставив при этом десятка новых. Б. Шоу Итак,

Из книги автора

Чем полезен компьютер для изучения генома человека? Без компьютерных биоинформационных технологий (геноинформатики, или, в более широком смысле, - биоинформатики) развитие геномных исследований вообще едва ли было бы возможным. Даже трудно себе представить, как бы

Из книги автора

ЧАСТЬ III. ПРОИСХОЖДЕНИЕ И ЭВОЛЮЦИЯ ГЕНОМА ЧЕЛОВЕКА

Из книги автора

Насколько геном человека отличается от генома шимпанзе? Геномом называют совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма. Геном является характеристикой не отдельной особи, а вида организмов. В феврале 2001 года в американских

Из книги автора

Глава 11 Расшифровка генома человека Что вы скажете, когда, карабкаясь из последних сил к вершине горы, на которой еще никто не бывал, вдруг увидите человека, взбирающегося вверх параллельной тропой? В науке сотрудничество всегда гораздо плодотворнее,

После краткого рассмотрения основных методов, наиболее часто используемых в молекулярной генетике для исследования структуры и механизмов функционирования генов, представляется целесообразным на примере генома человека подробнее познакомиться с практическим применением этих методов и их модификаций для изучения больших геномов. В целях всестороннего исследования генома человека, этого колоссального по объему хранилища его генетической информации, недавно была разработана и воплощается в жизнь специальная международная программа "Геном человека" ("Human Genome Project"). Основной задачей программы является построение исчерпывающих генетических карт большого разрешения каждой из 24 хромосом человека, которое, в конечном счете, должно завершиться определением полной первичной структуры ДНК этих хромосом. В настоящее время работы по проекту идут полным ходом. В случае успешного его завершения (а это по планам должно произойти в 2003 г.) у человечества появятся перспективы досконального изучения функциональной значимости и механизмов функционирования каждого из его генов, а также генетических механизмов, управляющих биологией человека, и установления причин большинства патологических состояний его организма.

    1. Основные подходы к картированию генома человека

Решение основной задачи программы "Геном человека" включает три основных этапа. На первом этапе необходимо специфическим образом разделить каждую индивидуальную хромосому на части меньшего размера, позволяющего их дальнейший анализ известными методами. Вторая стадия исследований предполагает определение взаимного расположения этих индивидуальных фрагментов ДНК друг относительно друга и их локализации в самих хромосомах. На завершающем этапе необходимо произвести собственно определение первичной структуры ДНК каждого из охарактеризованных фрагментов хромосом и составить полную непрерывную последовательность их нуклеотидов. Решение задачи не будет полным, если в найденных последовательностях нуклеотидов не удастся локализовать все гены организма и определить их функциональное значение. Прохождение трех вышеперечисленных этапов требуется не только для получения исчерпывающих характеристик генома человека, но и любого другого генома большого размера.

      1. Генетические карты сцепления

Генетические карты сцепления представляют собой одномерные схемы взаимного расположения генетических маркеров на индивидуальных хромосомах. Под генетическими маркерами понимают любые наследуемые фенотипические признаки, различающиеся у отдельных особей. Фенотипические признаки, отвечающие требованиям генетических маркеров, весьма разнообразны. Они включают в себя как особенности поведения или предрасположенность к определенным заболеваниям, так и морфологические признаки целых организмов или их макромолекул, различающихся по структуре. С развитием простых и эффективных методов исследования биологических макромолекул такие признаки, известные под названием молекулярных маркеров , стали наиболее часто использоваться при построении генетических карт сцепления. Прежде чем перейти к рассмотрению методов построения таких карт и их значения для исследования генома, необходимо напомнить, что термин "сцепление " употребляется в генетике для обозначения вероятности совместной передачи двух признаков от одного из родителей потомству.

При образовании половых клеток (гамет) у животных и растений на стадии мейоза, как правило, происходит синапсис (конъюгация) гомологичных хромосом. Сестринские хроматиды гомологичных хромосом соединяются по всей длине друг с другом, и в результате кроссинговера (генетической рекомбинации между хроматидами) происходит обмен их частями. Чем дальше два генетических маркера располагаются друг от друга на хроматиде, тем больше вероятность того, что разрыв хроматиды, необходимый для кроссинговера, произойдет между ними, и два маркера в новой хромосоме, принадлежащей новой гамете, окажутся отделенными друг от друга, т.е. их сцепление нарушится. Единицей сцепления генетических маркеров является морганида (единица Моргана, М), которая содержит 100 сантиморганид (сМ). 1 сМ соответствует физическому расстоянию на генетической карте между двумя маркерами, рекомбинация между которыми происходит с частотой 1%. Выраженная в парах оснований 1 сМ соответствует 1 млн п.о. (м.п.о.) ДНК.

Генетические карты сцепления правильно отражают порядок расположения генетических маркеров на хромосомах, однако полученные при этом значения расстояний между ними не соответствуют реальным физическим расстояниям. Обычно данный факт связывают с тем, что эффективность рекомбинации между хроматидами на отдельных участках хромосом может сильно различаться. В частности, она подавлена в гетерохроматиновых участках хромосом. С другой стороны, в хромосомах часто встречаются "горячие точки" рекомбинации. Использование частот рекомбинации для построения физических генетических карт без учета этих факторов будет приводить к искажениям (соответственно занижению или завышению) реальных расстояний между генетическими маркерами. Таким образом, генетические карты сцепления являются наименее точными из всех имеющихся типов генетических карт, и их можно рассматривать только в качестве первого приближения к реальным физическим картам. Тем не менее, на практике именно они и только они позволяют локализовать сложные генетические маркеры (например ассоциированные с симптомами заболевания) на первых этапах исследования и дают возможность их дальнейшего изучения. Необходимо помнить, что в отсутствие кроссинговера все гены, находящиеся на индивидуальной хромосоме, передавались бы от родителей потомству вместе, поскольку они физически сцеплены друг с другом. Поэтому индивидуальные хромосомы образуют группы сцепления генов, и одной из первых задач построения генетических карт сцепления является отнесение исследуемого гена или последовательности нуклеотидов к конкретной группе сцепления. В табл. II.4 перечислены современные методы, которые, по данным В.А. МакКьюзика, наиболее часто использовались для построения генетических карт сцепления до конца 1990 г.

Картирование генов - определение положения данного гена на какой-либо хромосоме относительно других генов. Используют три основные группы методов картирования генов – физическое (определение с помощью рестрикционных карт, электронной микроскопии и некоторых вариантов электрофореза межгенных расстояний – в нуклеотидах), генетическое (определение частот рекомбинаций между генами, в частности, в семейном анализе и др.) и цитогенетическое (гибридизации in situ, получение монохромосомных клеточных гибридов, делеционный метод и др.). В генетике человека приняты 4 степени надежности локализации данного гена – подтвержденная (установлена в двух и более независимых лабораториях или на материале двух и более независимых тест - объектов), предварительная (1 лаборатория или 1 анализируемая семья), противоречивая (несовпадение данных разных исследователей), сомнительная (не уточненные окончательно данные одной лаборатории).

Генетическое картирование предполагает определение расстояний по частоте рекомбинаций между генами. Физическое картирование использует некоторые методы молекулярной генетики для определения расстояния в нуклеотидах. Генетическое картирование - это определение группы сцепления и положения картируемого гена относительно других генов данной хромосомы.
Чем больше генов известно у данного вида, тем точнее результаты этой процедуры. Как правило, число генов в группах сцепления зависит от линейных размеров соответствующих хромосом. Однако, протяженные области конститутивного гетерохроматина (в районе центромеры и теломерных участков) практически не содержат генов и, таким образом, нарушают эту зависимость.

На первом этапе картирования определяют принадлежность гена к той или иной группе сцепления. Как известно, у D. melanogaster вдиплоидном наборе четыре пары хромосом: первая пара - половые хромосомы (XX - у самок, XY - у самцов), вторая, третья и четвертая - аутосомы. Число генов в Y-хромосоме самцов очень мало. Для локализации вновь возникшей мутации необходимо располагать набором маркерных генов для каждой хромосомы. Картирование мутации основывается на анализе ее сцепления с этими маркерами. Например, если интересующая нас мутация наследуется независимо от маркеров второй хромосомы, делается вывод о ее принадлежности к другой группе сцепления.

О значении картирования генов, и в первую очередь генов человека, говорит создание Международной программы "Геном человека ", которая ставит перед собой грандиозную задачу картировать все гены человека и секвенировать полностью всю ДНК генома. Программа разрабатывается в сотнях лабораторий во многих странах мира. Используются методы молекулярной биологии, цитогенетики и генетики соматических клеток. Разработаны критерии, определяющие достоверность картирования. Определены различные уровни достоверности локализации гена.

Важным вкладом в развитие генетики стала хромосомная теория наследственности, разработанная, прежде всего, благодаря усилиям американского генетика Томаса Ханта Моргана и его учеников и сотрудников, избравших объектом своих исследований плодовую мушку Drosophila melanogaster . Изучение закономерностей сцепленного наследования позволило путем анализа результатов скрещиваний составить карты расположения генов в «группах сцепления» и сопоставить группы сцепления с хромосомами (1910-1913 гг.).

Алфред Стёртевант (сотрудник Моргана) предположил, что частота кроссинговера на участке между генами, локализованными в одной хромосоме, может служить мерой расстояния между генами. Иными словами, частота кроссинговера, выражаемая отношением числа кроссоверных особей к общему числу особей, прямо пропорциональная расстоянию между генами. Тогда можно использовать частоту кроссинговера для того, чтобы определять взаимное расположение генов и расстояние между генами.

Генетическое картирование – это определение поло­жения какого-либо гена по отношению к двум (как минимум) другим генам. Постоянство процента кроссинговера между определенными генами позволяет локализовать их. Единицей расстояния между генами служит 1 % кроссинговера; в честь Моргана эта единица называется морганида (М), или сантиморганида (сМ).

На первом этапе картирования необходимо определить принадлежность гена к группе сцепления. Чем больше генов известно у данного вида, тем точнее результаты картирования. Все гены разбивают на группы сцепления.

Число групп сцепления соответствует гаплоидному набору хромосом. Например, у D. melanogaster 4 группы сцепления, у кукурузы – 10, у мыши – 20, у человека – 23 группы сцепления. При наличии половых хромосом они указываются дополнительно (например, у человека 23 группы сцепления плюс Y-хромосома).

Как правило, число генов в группах сцепления зависит от линейных размеров соответствующих хромосом. Так, у плодовой мушки имеется одна (IV) точечная (при анализе в световом микроскопе) хромосома. Соответственно число генов в ней во много раз меньше, чем в остальных, значительно превосходящих ее по длине. Следует также отметить, что в гетерохроматических районах хромосом генов нет или почти нет, поэтому протяженные области конститутивного гетерохроматина могут несколько изменить пропорциональность числа ге­нов и длины хромосомы.

На основании генетического картирования составляются генетические карты. На генетических картах крайнему гену (т.е. наиболее удаленному от центромеры) соответствует нулевая (исходная) точка. Удаленность какого-либо гена от нулевой точки обозначается в морганидах.

Если хромосомы достаточно длинные, то удаление гена от нулевой точки может превышать 50 М – тогда возникает противоречие между отмеченными на карте расстояниями, превышающими 50%, и постулированным выше положением, согласно которому 50 % кроссоверов, полученных в эксперименте, фактически должны означать отсутствие сцепления, т. e. локализацию генов в разных хромосомах. Это противоречие объясняется тем, что при составлении генетических карт суммируются рас­стояния между двумя наиболее близкими генами, что превышает экспериментально наблюдаемый процент кроссинговера.

Картирование генов gene mapping, mapping - картирование генов.

Oпределение положения данного гена на какой-либо хромосоме относительно других генов; используют три основные группы методов К.г. - физическое (определение с помощью рестрикционных карт, электронной микроскопии и некоторых вариантов электрофореза межгенных расстояний - в нуклеотидах), генетическое (определение частот рекомбинаций между генами, в частности, в семейном анализе и др.) и цитогенетическое (гибридизации in situ <in situ hybridization >, получение монохромосомных клеточных гибридов <monochromosomal cell hybrid >, делеционный метод <deletion mapping > и др.); в генетике человека приняты 4 степени надежности локализации данного гена - подтвержденная (установлена в двух и более независимых лабораториях или на материале двух и более независимых тест-объектов), предварительная (1 лаборатория или 1 анализируемая семья), противоречивая (несовпадение данных разных исследователей), сомнительная (не уточненные окончательно данные одной лаборатории); в Приложении 5 приведена сводка (по состоянию на 1992-93) структурных генов, онкогенов и псевдогенов в геномах человека и - включая некоторые мутации - мыши.

(Источник: «Англо-русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд-во ВНИРО, 1995 г.)


Смотреть что такое "картирование генов" в других словарях:

    картирование генов - Определение положения данного гена на какой либо хромосоме относительно других генов; используют три основные группы методов К.г. физическое (определение с помощью рестрикционных карт, электронной микроскопии и некоторых вариантов электрофореза… …

    Картирование генов - определение положения данного гена на какой либо хромосоме относительно других генов. Генетическое картирование предполагает определение расстояний по частоте рекомбинаций между генами. Физическое картирование использует некоторые методы… … Словарь по психогенетике

    картирование [генов] с помощью бэккроссирования - Генетический метод картирования, основанный на получении бэккроссных гибридов родственных форм и анализе расщепления вариантов аллелей, полиморфных по длинам рестрикционных фрагментов; наиболее распространен данный метод в картировании генов у… … Справочник технического переводчика

    Backcross mapping картирование [генов] с помощью бэккроссирования. Генетический метод картирования, основанный на получении бэккроссных гибридов родственных форм и анализе расщепления вариантов аллелей, полиморфных по длинам рестрикционных… …

    Картирование сравнительное генов млекопитающих - * картаванне параўнальнае генаў млекакормячых * comparative mapping of mammalian genes информативное сопоставление генетических карт человека и любого из др. видов млекопитающих). Они должны быть одновременно хорошо изучены и далеко отстоять друг …

    Картирование - * картаванне * mapping установление позиций генов или каких то определенных сайтов (см.) вдоль нити ДНК (. Карта) … Генетика. Энциклопедический словарь

    Картирование с помощью облученных гибридов [клеток] - * картаванне з дапамогай апрамененых гібрыдаў [клетак] * radiated hybrid mapping модификация метода картирования генов с использованием гибридизации соматических клеток. Клетки гибридного клона «грызун Ч человек», содержащие только хромосому 1… … Генетика. Энциклопедический словарь

    Radiation hybrid mapping картирование с помощью облученных гибридов [клеток]. Модификация метода картирования генов с использованием гибридизации соматических клеток клетки гибридного клона “грызун ˟ человек”, содержащие только 1 хромосому… … Молекулярная биология и генетика. Толковый словарь.

    Установление порядка расположения генов и относительного расстояния между ними в группе сцепления … Большой медицинский словарь

Выбор редакции
Пятница:). Не хочется рассказывать о наводнениях, насилии, войнах и наркоманах. Давайте лучше посмотрим на удивительно красивые...

Опытом делится Алексей Богданов — бывший минский врач, работающий анестезиологом в Великобритании. В Англию я попал практически случайно,...

Поклонники спорта подразделяются на две неравные группы: спортсменов и болельщиков.Прежде чем заняться тем или иным видом спорта, стоит...

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.Перед скачиванием данного файла вспомните о тех хороших...
Токоограничивающий реактор представляет собой катушку со стабильным индуктивным сопротивлением. В цепь прибор подключен последовательно....
Бабенко ДарьяРабота посвящена актуальной проблеме – изучению зимующих птиц города Покачи и помощи птицам в зимнее время. Описаны...
Наши задачи: 1.Выяснить, знают ли учащиеся моего класса фразеологизмы о птицах. 2.Узнать, что символизируют названия некоторых птиц в...
Мало кто задается вопросом "что такое производство", считая это понятие элементарным. Однако на самом деле это достаточно сложный...
Адаптация, а также профориентация персонала – это целый комплекс различных мероприятий, которые направлены на то, чтобы выяснить...